Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension.
نویسندگان
چکیده
We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter sigma using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transitions using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length kappa. We find that the gas-liquid phase separation is stable for kappasigma<or=4, and that the critical temperature decreases upon increasing the screening of the interaction (decreasing the range of the interaction). In addition, we determine the gas-liquid interfacial tension using grand-canonical Monte Carlo simulations. The interfacial tension decreases upon increasing the range of the interaction. In particular, we find that simple scaling can be used to relate the interfacial tension of the YRPM to that of the restricted primitive model, where particles interact with bare Coulomb interactions.
منابع مشابه
Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures
Mixtures of colloids and polymers display a rich phase behavior, involving colloidal gas (rich in polymer, poor in colloid), colloidal liquid (poor in polymer, rich in colloid) and colloidal crystal phases (poor in polymer, highly ordered colloids). Recently, the colloidal gas-colloidal liquid interface received considerable attention as well. Due to the colloidal length scale the interfacial t...
متن کاملMixtures of charged colloid and neutral polymer: influence of electrostatic interactions on demixing and interfacial tension.
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa,...
متن کاملStability of the Liquid Phase in Colloidal Electrolytes
The equilibrium phase diagram of a 1:1 symmetrical mixture composed of oppositely charged colloids is calculated using Monte Carlo simulations. We model the system by the DLVO effective interaction potential. The phase diagram is similar to that of its atomic analog (the ionic fluid), where a liquid-gas first order transition emerges in the low T − ρ regions being stable with respect to crystal...
متن کاملInvestigation of the interfacial tension of complex coacervates using field-theoretic simulations.
Complex coacervation, a liquid-liquid phase separation that occurs when two oppositely charged polyelectrolytes are mixed in a solution, has the potential to be exploited for many emerging applications including wet adhesives and drug delivery vehicles. The ultra-low interfacial tension of coacervate systems against water is critical for such applications, and it would be advantageous if molecu...
متن کاملLiquid-gas separation in colloidal electrolytes.
The liquid-gas transition of an electroneutral mixture of oppositely charged colloids, studied by Monte Carlo simulations, is found in the low-temperature-low-density region. The critical temperature shows a nonmonotonous behavior as a function of the interaction range, kappa(-1), with a maximum at kappasigma approximately 10, implying an island of coexistence in the kappa-rho plane. The system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 9 شماره
صفحات -
تاریخ انتشار 2006